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Abstract
The Anchor blocks are the structures that take most of the forces acting on the pipe bends and transfer it
safely to the ground. Since the stability of the Anchor Blocks is a function of its weight, the economic design
comes with accurate calculation of the forces. Although several sources have the design calculations for
Anchor Blocks, there is room for improvements for 3D calculations. The calculation of the forces is hard to
visualize in a two-dimensional plane as numerous planes have to be made for the analysis. The purpose of
this paper is to use the 3D vector mechanics so that forces can all be represented by global vectors in X, Y & Z
direction and henceforth are easy to study. By doing so the intermittent calculations, as well as the end results,
are efficient, coherent and scalable (to any number of a joint like T-joint, or combination of bends and joints).
The formulae and procedures are developed with consideration of developing a well-organized CAD-based
software for an even better analysis of a variety of irregular shapes in the future with reduced human efforts.
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1. Introduction

All types of above-ground penstock are secured in
place at points by anchor blocks. Anchor blocks are the
structures which represents the fixed supports of the
penstock and are located at vertical or horizontal bends
(Mosonyi, 1991). In reality however, there aren’t just
the cases of individual horizontal and vertical bend
but the mixture of both, specially due to the difficult
terrains and budget problems in case of Nepal.

The pipelines mainly considered on this paper are the
high pressure or low pressure penstocks of
hydro-power water conveyance systems, but will also
be applicable to analogous systems. The main forces
on the anchor blocks are from the dead weights,
hydro-static forces, the earth pressures and seismic
forces(if considered). There are many other minor
forces, which are considered here although a good
enough result can be obtained with only the major
ones. Although some optimization has been done to
get empirical equations(Al-Gahtani, 2009), the 3D
approach for the analysis has been rare. Sundberg
(2013) has taken 3D approach to calculate the

co-ordinates and forces which is based on ASCE
(2012). But the vectors are defined only locally and
used for determining the important co-ordinates of
Anchor Block; so expanding the use of those vectors
to calculation of forces, we can avoid the need to
resolve the forces in any planes.

2. Materials and Methods

The basic definition of the forces which acts on the
Anchor Block as per guidelines (ASCE, 2012, Kisan
et al., 1984) were used to developed their formula
in 3D. Then the design and analysis steps were then
modified to accommodate the new formulae.

The formula and derivations in this paper are based on
these premises.

1. Forces are transferred from pipe to the anchor
blocks and then to the ground.

2. Other supports besides the anchor blocks are the
saddle supports for exposed pipelines and the
earth itself for the buried ones.
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3. The radius of curvature of the pipe is very small
compared to the head of water in the bend, so the
head can be assumed constant over the length of
a bend.

4. The diameter of pipe is very small compared to
the head of water, so the water pressure can be
assumed constant over the cross section. Thus,
the net resultant of pressure is at the geometric
center.

5. The friction force taken for the calculations is
the maximum amount which can develop, the
friction force on itself can never exceed the
total of sliding forces and acts on the opposite
direction of the strain produced.

6. The water hammer effect is considered as added
dynamic head to the static head, the temporal
variation of the force is not considered.

These assumptions will help simplify the calculation
of magnitude of the forces associated with the Anchor
Blocks, as for the direction of the force vectors we
need a way to represent their direction in a more
unified way.

2.1 Co-ordinate Systems

Since the direction of forces developed in anchor
blocks depends upon the directional alignment of the
pipes and blocks, two local co-ordinate systems are
defined in terms of the global system to make all those
forces compatible with one another. The definition of
the forces are in local scope, the local system defined
here will be used to convert those forces into global
ones.

The forces are expressed in terms of the global
co-ordinate systems of î, ĵ and k̂ which are the unit
vectors along the direction of X, Y and Z axis
respectively. Every force consists of three components
and can be expressed as F = FX î+FY ĵ +FZ k̂. The
Easting, Northing and Elevation are taken as the X, Y
and Z co-ordinates respectively. Using of any
projection system will have satisfactory result
although mUTM (modified UTM) co-ordinate system
with Everest Nagarkot datum is used for the examples.

First local Co-ordinate system written from here
onward as Local Co-ordinate system-I has three
mutually perpendicular axes one along the flow
direction of the water (r̂1), another perpendicular to
the first one and lying completely in the vertical plane

passing through the pipe (r̂2) and the last one
perpendicular to the both-that would be left of the
pipe horizontally (r̂3). The two vectors r̂1 & r̂2 lie
perpendicularly in the vertical plane.

Second local Co-ordinate system written from here
onward as Local Co-ordinate system-II consists of
one unit vectors each from Global and First Local
System which are the unit vector along positive Z axis
(k̂) and unit vector perpendicular to the pipe in the
horizontal plane (r̂3), the new unit vector is the unit
vector along the direction of the pipe in the horizontal
plane (r̂p). The two vectors r̂3 & r̂p lie perpendicularly
in horizontal plane.

The directions of these vectors are illustrated in figures
2 & 3.

Representing a force’s r̂1 component similarly as
representing X component of force F as ~FX would
cause problems and some unaesthetic symbols, so for
simplicity, let’s define a vector operation ∗ which
gives the vector component of first operand to the
second operand. Mathematically it can be expressed
as,

~A∗~B = (~A ·~B)~B (1)

As shown in figure 1,when the second operand is a
unit vector this operation results in the rectangular
component of the first operand to the second (~F ∗ î is
same as ~FX ).

Figure 1: Demonstration of * operator

Hence, the direction of the given expression is always
the direction of vector given after ∗ operator.

Conversion of Local Systems in to Global System
can be done by considering a pipe with center point
spanning between two Point of Intersections(PI)
PI1(x1,y1,z1) and PI2(x2,y2,z2). The relationships
between aforementioned vectors can be calculated
using trigonometry and co-ordinate geometry :
The r̂1 vector along the flow direction is the
displacement vector from start to end of the
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pipe(center point). Hence, it is given as unit direction
of displacement vector from PI1 to PI2.

r̂1 =
x2− x1

l
î+

y2− y1

l
ĵ+

z2− z1

l
k̂ (2)

Similarly, r̂p & r̂2 can be calculated as per their
definitions.

r̂p =
x2− x1

lp
î+

y2− y1

lp
ĵ+0k̂ (3)

r̂2 = sin(α)r̂p− cos(α)k̂

= (k̂× r̂p)× r̂1 (4)

r̂3 = r̂1× r̂2 = k̂× r̂p (5)

Where l & lp are the total length and length in plan of
the pipe segment. Which can be calculated as;

l =
√
(x2− x1)

2 +(y2− y1)
2 +(z2− z1)

2 (6)

lp =

√
(x2− x1)

2 +(y2− y1)
2 (7)

And α is the angle made by flow direction to the
horizontal plane.

α = arctan(
z2− z1

lp
) (8)

Figure 2: XY(i) & YZ(ii) projections of different
axes

Figure 3: Isometric views of different axes

For the moment calculation, the point of application
of forces are also required. The most used Points are:

Pj(x j,y j,z j) PI of bend

Pju(x ju,y ju,z ju) u/s PI of bend

Pjd(x jd ,y jd ,z jd) d/s PI of bend

Pi(xi,yi,zi) Center of toe of ith

face of Anchor Block

PCG(xCG,yCG,zCG) CG of Anchor Block

Other points can be easily determined using geometric
rules if need arises.

2.2 Forces on Anchor Block

The Anchor blocks’ main function is to provide
stability from forces in the pipe and environment. It
experiences a variety of forces from water inside the
pipe, pipe itself, earth surrounding it and the water in
the earth. Some of these forces are Major Forces
having significant part in resultant, while others can
be ignored for approximation. Some forces might be
major in some conditions and insignificant in other.

2.2.1 Self-Weight

The weight of the components like Pipe, Water and
Block are all in −k̂ direction, but only their
components in the direction of interests are evaluated:

Figure 4: Self-weight of pipe and its components

As shown in figure 4, the weight of the pipe can be
resolved in two direction. Self-weight of pipe material
along the pipe axis is calculated by taking the
component of weight in r̂1 direction i.e. W1 = ~W ∗ r̂1.
This force is equally divided between the two anchor
blocks at both end of the pipe.

~W1 = γp
l
2
(−k̂)∗ r̂1 (9)
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Only unit weight of pipe (γp) is taken as water is free
to move in r1 direction. ~W1u/s & ~W1d/s are calculated
with respective r̂1 & l.

Similarly, self-weight of pipe and water perpendicular
to the pipe axis is the component along r̂2 direction
i.e. W1 = ~W ∗ r̂2. But a major difference except the
direction is that the perpendicular component is shared
among the saddle supports so only the length between
the Block and nearest saddle is used for Fweight unlike
in equation 9 where total length between PI is taken.
The reason being that this component of weight is
distributed between the piers along the pipe length as
well asthe Anchor Blocks at the ends.

~W2 = γp+w
L
2
(−k̂)∗ r̂2 (10)

Again, ~W2u/s & ~W2d/s are calculated with respective
r̂2 & L.
Self-weight of Anchor Block is used for the stability
analysis, it provides most amount of stabilizing force
and moment. It can be calculated as unit weight
multiplied by volume of block. Summation of
different parts can be done if it consists of more than
one material.

~WB =−γconcVBk̂ (11)

2.2.2 Hydro-static Forces

Hydro-static forces in penstock that we need to
consider are due to bend and reducer. Same principle
can be applied in case of other type of joints. In a
straight part of pipe, the hydro-static forces of water
will be cancelled out in the direction of flow. The
remaining hydro-static force is radially outward. That
force will be balanced by hook’s stress of pipe and has
zero resultant.
But in case of bend, the force on flow direction
doesn’t get canceled out due to change in direction, it
can be determined by taking the integration of all the
hydro-static forces in the length of bend. Which
yields,

~Hb = ρwgZA(r̂1u/s− r̂1d/s) (12)

The sign convention is +ve for incoming and −ve for
outgoing pipes, since a bend has two pipes a simple
vector difference will suffice.

Similarly in case of reducer, the change in area in entry
and exit yields some residual hydro-static force given

by,

~Hr = ρwgZ(Au/s−Ad/s)(r̂1u/sORr̂1d/s) (13)

The variation in pressure throughout the pipe section
and length (Munson et al., 2009) are considered to be
insignificant in case of huge head (Z).

Figure 5: Directions of Hydrostatic Forces on
horizontal bend (i) and reducer (ii)

2.2.3 Seismic Forces

Seismic forces are the forces developed due to relative
movements between the block and the earth. As
Nepal has been vulnerable to Earth quakes due to its
geological structures(Pandey et al., 1995), and has had
recent event of major earthquake in 2015 (Bhattarai
et al., 2015), the seismic forces are major forces in
design/analysis of any structure.
The horizontal seismic force is calculated by taking
the multiplication of weight by horizontal seismic
coefficient.

SH = KHWB (14)

The direction of horizontal is unknown till the point of
impact, so for critical condition the direction can be
taken as the direction of resultant force to produce the
maximum sliding force.
Similarly, vertical seismic force is the multiplication
with vertical seismic coefficient. The direction of force
can be taken upward for critical condition as downward
force would increase stability.

~SV = KVWB(±k̂) (15)

Figure 6: Seismic forces in plan (i) and section along
centerline (ii)
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In figure 6 the θ angle is arbitrary as the seismic force
can act on any direction at the time of earthquake and
hence for analysis it should be taken in a direction
that is most critical to the structure, for now that is the
same direction of resultant as it’d maximize the sliding
force. Also, the point of application of seismic force is
the Center of Gravity of the Anchor Block, the point
of application of resultant may be different.

2.2.4 Force from Earth Pressures

Earth pressure is unavoidable since the blocks rest on
the earth itself. In certain conditions the pressure from
the earth can help establish the block but sometimes it
can be major force in destabilizing. Since forces due
to earth pressures are more in opposite direction of
displacement, most of the time it is resisting in nature.
The earth pressure is directly dependent on the depth
of the soil, hence its distribution is triangular (Arora,
1987). The total force due to soil of depth h can be
calculated by equation 16. This force acts at a point
1/3rd from the bottom vertically and at the center of
face horizontally. This force acts on each face of the
block, the force on the ith face due to the soil touching
it can be calculated as:

~Ei =
1
2

kγslih2(−n̂i) (16)

Here, the unit vector n̂i is perpendicular to the face
of the block on which the pressure is acting. The
direction of unit vector is outward from the surface of
the block as shown in figure 7(ii).

Figure 7: Direction of forces due to earth pressure

In the case that the soil is saturated, submerged unit
weight of soil (γ ′s) is used instead of (γs).
Here k is the coefficient of earth pressure which
depends on the direction of movement of block. If R
is the resultant force causing the displacement,

k =


ka for (~R· n̂i)< 0
kp for (~R· n̂i)> 0
k0 for (~R· n̂i) = 0

Since we don’t want the block to actually start sliding
(which means stability-failure) at-rest coefficient of
earth pressure (k0) instead of passive earth pressure
(kp) is used in design for (~R· n̂i)≥ 0.

2.2.5 Ground Water Up-thrust

When the ground is saturated, it not only reduces the
Coefficient of friction, it can also give the up-thrust
which helps reduce the vertical component of resultant.
This force doesn’t need to be considered if the site has
good drainage.

And the Upthrust force on the base in that condition
can be calculated as the weight of the water displaced,
i.e. if the volume of block under the ground water
level (shaded part in figure 8) is V then the upthrust
U is equal to γwV (Munson et al., 2009) acting on the
CG of the displaced water in k̂ direction.

Figure 8: Ground Water Forces acting on a Block
(forces on only u/s and d/s faces)

Assuming horizontal level of water at height of h from
anchor block base, the upthrust force for a block with
projected base area of A can be calculated as,

~U = cγwhAbase(k̂) (17)

While, the horizontal water force on ith face can be
calculated with formula for water force (Munson et al.,
2009),

~Pi =
1
2

γwli ∗h2
i (−n̂i) (18)

When the water level doesn’t vary between the faces
of the block the resultant horizontal resultant (vector
sum of all forces given by equation 18) is zero.
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2.2.6 Hydrodynamic Forces

The forces due to change in the direction of
movement of the water is given by the rate of change
of the momentum of the water Munson et al. (2009).
Same as hydro-static forces hydrodynamic forces are
also calculated for two cases.
Hydrodynamic forces in a bend is again the
integration of moment change over the span of bend.
Which yields,

~Hb−dyn = ρwQv(r̂1u/s− r̂1d/s) (19)

Similarly hydrodynamic forces in a reducer is the
change in momentum due to velocity change,

~Hr−dyn = ρwQ(vu/sr̂1u/s− vd/sr̂1d/s) (20)

The direction of these forces are same as the
hydrostatic forces, which are illustrated in figure 5.

2.2.7 Thermal Forces

Thermal fores are developed due to change in the
length of the pipe which in turn is caused by the
change in the temperature of the environment. In case
of the buried pipes the temperature variation isn’t
significant, and in case of expansion joints, this force
is used in conjunction with the frictional force.

Figure 9: Thermal forces during expansion

~FT = ApE∆T αL(r̂1u/s− r̂1d/s) (21)

Here, Ap = πDt is the cross-sectional area of pipe
material.

Although thermal forces will be nullified at expansion
joints, the friction resisting the transfer of the strain to
the expansion joint will make the direction of friction
force opposite to the strain from temperature change.
If no expansion joints are provided thermal forces act

directly to the blocks at the two ends (friction force
saddles help to distribute the force as shown in figure
9). But the friction force can be neglected as it is only
resistive in nature and the thermal force is considered
to act directly on the Blocks. But in the case that
Expansion joint is provided the Thermal force is
neutralized at the joint, but the frictional force resists
the neutralization and becomes important.

2.2.8 Frictional Forces

Since frictional force is resistive in nature it mostly
acts to help the stability by decreasing other forces.
For example if only self weight of pipe was to act on
it, the friction along the piers will act upwards to resist
the pipe sliding downwards from self weight. So, in
such cases this force can be neglected.

It becomes a major destablizing force when expansion
joints are provided because it resists the release of
thermal force on expansion joints.
In case of pipes with expansion joints, the stress due to
expansion/contraction is canceled out only if it travels
to the expansion joint, so the friction with the saddle
can prevent the force transfer and add that force to
Anchor Block.

Figure 10: Frictional forces

In such case the frictional force is the minimum of
thermal forces developed and maximum frictional
resistance. While in case without expansion joint this
force can help reduce the transfer of thermal force
into the Anchor Blocks, but that condition is not
considered as it favors the stability.
The maximum amount of resisting force a single pier
can provide in this condition can be calculated as,

~fmax = µsγp+w(Lpier r̂2 · k̂)r̂1 (22)

Here, Lpier is the distance between the piers, and the
total frictional force can be found out by multiplying
this with number of piers.
For friction with soil where piers are not present, the
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frictional force can be calculated by,

~fmax

= γp+wµ(αLu/s(r̂2u/s ·k̂)r̂1u/s+βLd/s(r̂2d/s ·k̂)r̂1d/s)

(23)

Where, α and β are coefficients ranging from -1 to +1;
their sign are +ve and -ve according to the direction
of movement of pipe respective to saddle. And their
magnitude depends on whether the expansion joints
are present or not. If expansion joints are not provided
take α = β = 0.5; otherwise, take the coefficients as
the ratio of distance to the expansion joint to the total
distance to the next anchor block in respective sides
(shown in figure 10).

It is important to note that, these values are maximum
amount of friction force and actual friction force can
never surpass the force it is resisting. So, the actual
friction force can not exceed the value of Thermal
Force if expansion joint was absent (as given from
equation (21)).

2.2.9 Provision for Other Forces

Extra forces (like force on rock anchorages) for
special conditions can be added as a vector as
specified in the procedure below, the point of action
and the vector form of the force has to be developed
before proceeding. Because of that, the characteristics
of the force has to be known before adding it to this
model.

2.2.10 Calculation of Resultant

The resultant of the forces is simply the vector sum of
the forces acting on the anchor block. The line of
action of the resultant can be found by adding the
moments of all the forces about any axis of rotation,
then use equation 28. The forces are classified as
Block Independent, Block Dependent and
Displacement Dependent (labeled respectively as BI,
BD & DD in Table 1) for the resultant calculation
procedure.

For precision analysis all forces are to be considered
while for rough estimation only considering major
forces will result in practical enough result in most
cases.

1. Add the Block Independent forces to get the first
resultant

~R1 = ~W1 + ~W2 + ~Hb + ~Hr + ~Hdyn (24)

Table 1: Classification of Forces

Forces BI BD DD
Major Forces

Self-Weight X X
Hydro-static Forces X
Seismic Forces X
Earth Forces X
Ground Water Upthrust X

Minor Forces
Frictional Force X
Hydrodynamic Forces X
Thermal forces X
Other Forces Undefined

2. Assume a Block Shape & Size

3. Calculate Block Dependent forces

4. Calculate the value of α and β then the value of
frictional force.

5. Calculate second resultant as:

~R2 = ~R1 + ~WB±~f (25)

add ~FT to equation 25 if no expansion joints are
present.
Note: Use + for expansion case and − for
contraction case.

6. Use ~R2 as resultant and calculate the forces due
to earth pressure.

7. Add the earth forces to the resultant, and if there
are any special forces add them too.

~R = ~R2 +∑~Ei + ~fspecial (26)

8. Calculate the Seismic forces and upthrust if
required, but don’t add it to the resultant.

2.2.11 Output of the Calculation

The force calculation steps will yield the resultant
force in vector form (~R = Rx î+Ry ĵ+Rzk̂) as well as
its line of action. The Seismic forces and Ground water
up thrust will also be available to combine with the
resultant in their respective cases of analysis.

The resultant force’s line of action can be determined
by Varignon’s theorem given in Varignon (n.d.).
Considering any point O(x0,y0,z0) in a rotation plane;
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we can calculate the moment of all the forces around
the rotation axis as:

~M = ∑~ri×~Fi =~r×~R (27)

Here,~ri = Pi−O where ri,Pi&Fi are the moment arm,
point of action of ith force and that force respectively,
while ~r and ~R are lever arm of resultant and the
resultant. If r is the perpendicular distance from O to
the line of action of the force,

r =
|~M|
|~R|

(28)

2.3 Stability Analysis

After the calculation of all the forces, the stability of
the block can be calculated in different cases using
many parameters. The cases considered for the
stability analysis are Expansion case (E), Contraction
case (C), Seismic case (S) and Ground water saturated
case (G). Other cases can also be used for analysis if
conditions and combination of forces are known for
that case, usually it’s superfluous to analysis for
non-critical cases.

The numerical parameters calculated for determining
the safety are, Factor of Safety against Sliding,
Overturning, eccentricity and the pressure at the base
of the block. The factor of safety against sliding in a
sliding direction ŝ is calculated as,

FoS = µ
~R · p̂
~R · ŝ

(29)

Here, R is the resultant force of all the forces on the
block, and p̂ is the unit vector perpendicular to the
sliding plane(towards the plane).

For horizontal sliding plane, the minimum factor of
safety is when the direction of slide is same as the
horizontal direction of resultant. So equation 29
becomes,

FoSmin = µ
−Rz√

(Rx)2 +(Ry)2
(30)

Here in equation 29 & 30, ~R = Rx î+Ry ĵ+Rzk̂ is the
total resultant force.
When seismic conditions are considered, SH is added
to the denominator and SV is subtracted from
numerator (in a way that results in least FoS). And
when Ground water is considered, U is subtracted
from the numerator (value of µ is also likely to
change)

Now, to analyze the safety against overturning, the
moment of all the forces are calculated with the
formula,

~M =~r×~F (31)

Where, r is the vector joining the point of rotation and
the force(F) in the rotating plane. Taking a unit vector
pointing out from the rotating plane m̂ in the same
direction as overturning rotation axis, Factor of safety
which is defined as the ratio of resisting moment to
overturning moment (Arora, 1987):

FoS =−∑−ve ~M· m̂
∑+ve ~M· m̂

(32)

Where the sum of positive represents overturning
moment, while negative is stabilizing moment.

When seismic conditions are considered, effects of
SH & SV are taken as they act at CG of block. Their
direction is again taken in such a way that they produce
maximum overturning moment.

When ground water is considered, effect of U is added
considering it acts on CG of base.

The check for eccentricity is that the line of action
should pass through the middle third of the base of the
block.

The intersection of line of action of the resultant with
the base of the Block is the point of action of the force
in the base. Now eccentricity can be found out by
determining the horizontal distance between the point
of action and the center of the base. This eccentricity is
then used to check the bearing pressures at each vertex
of base. The bearing pressures should lie between zero
and Bearing capacity of the soil.

3. Results and Discussions

The formulae and procedures for the Design and
Analysis of the Anchor Blocks are derived using the
vector approach. Those formulae were verified by
converting them to the trigonometric formulae in a 2d
setting. The trigonometric formulae for the analysis
can be found in many guidelines and are easier to be
verified.

3.1 Verification Using Trigonometric Method

As trigonometric method is little complicated for 3D,
we can assume Y co-ordinates of the pipe to be same
for comparison, so there is only vertical deflection.
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The formulae for the unit vectors in 2.1 will have (y2−
y1) = 0. The equation 2 becomes,

r̂1 =
x2− x1

l
î+

z2− z1

l
k̂ (33)

Similarly, r̂p is just î and r̂3 is ĵ. While, r̂2 is still
ĵ× r̂1.

Now, if we use vertical deflection angle α to convert
co-ordinate differences to trigonometric functions.
We’ll have,

tan(α) =
z2− z1

x2− x1
(34)

sin(α) =
z2− z1

l
(35)

cos(α) =
x2− x1

l
(36)

Where, l =

√
(x2− x1)

2 +(z2− z1)
2 is the length

between the PI. Now, redefining the r̂1 vector:

r̂1 = cosα î+ sinα k̂ (37)

And, r̂2 vector:

r̂2 = sinα î− cosα k̂ (38)

Let’s assume (αu/s,αd/s) as (α,β ) in this section for
simplicity.

Now replacing the values of the unit vectors in 2
dimension in the formulae of forces from 2.2Forces
on Anchor Block.

Replacing the values of unit vectors in Self-Weight
forces from section-2.2.1 we can get the trigonometric
formulae as given in Kisan et al. (1984) and DOED
Design Guidelines: Water Conveyance System of
Hydropower Projects (2007).

Equation 9 after substitution:

~W1 = γp
l
2
(−k̂) · (cosα î+ sinα k̂)r̂1

= −γp
l
2

sinα r̂1

So, the self weights along the flow direction due to
upstream and downstream pipe segment can be
expressed as:

W1u/s = γp
lu/s

2
sinα (39)

W1d/s = γp
ld/s

2
sinβ (40)

Similarly, equation 10 becomes:

~W2 = γp+w
L
2
(−k̂) · (sinα î− cosα k̂)r̂2

= −γp+w
L
2

cosα ∗ r̂2

W2 due to upstream and downstream pipe segments
are now:

W2u/s = γp+w
Lu/s

2
cosα (41)

W2d/s = γp+w
Ld/s

2
cosβ (42)

The self weight of Anchor Block WB is simply γconcVB,
which doesn’t need conversion.

Hydrostatic Forces The forces from section 2.2.2 can
also be converted in similar manner. The hydrostatic
force on bend after replacing the values of unit vectors
is:

~Hb = γwZA(cosα î+ sinα k̂− cosβ î− sinβ k̂)

Now, magnitude of the force given by square root of
the sum of squares of the components is,

Hb = γwZA
√

(cosα− cosβ )2 +(sinα− sinβ )2

(43)

Now, expanding and replacing cos2 θ + sin2
θ by 1,

we get,

= γwZA
√

1−2cosα cosβ +1−2sinα sinβ

Now, we know that cos(α − β )
= cosα cosβ + sinα sinβ & cos2θ = 1−2sin2

θ ,

= γwZA
√

2−2cos(α−β )

= γwZA

√
2−2(1−2sin2(

α−β

2
))

Finally, we get the hydro-static force in a bend as:

Hb = 2γwZAsin(
|α−β |

2
) (44)

For Hydrodynamic Forces, using the evaluations
from equation 43 to 44 we can directly write,

|r̂1u/s− r̂1d/s|= 2sin(
|α−β |

2
) (45)
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Thus, the hydrodynamic force from 2.2.6 can now be
redefined as,

Hdyn = 2ρwQvsin(
|α−β |

2
) (46)

replacing the value of velocity(v) in terms of
discharge(Q) & diameter(d), we get,

Hdyn = ρw
8Q2

πd2 sin(
|α−β |

2
) (47)

As for the frictional forces from section 2.2.8,
replacing the unit vectors yields,

~fmax = µsγp+wLpier((sinα î− cosα k̂) · k̂)r̂1

Which evaluates to µsγp+wLpier(cosα)∗ r̂1, therefore
the magnitude of the friction force is,

fmax = µsγp+wLpier(cosα) (48)

3.2 Sample Calculation

Now, Using the methods described before, a sample
calculation was done for a T-joint with a Bend
immediately following. Calculation of which would
have been very tedious with trigonometric methods.
The units of Forces, Moments and Lengths are in kN,
kN−m & m respectively.

The main inputs are the hydraulic parameters and the
alignment geometry. For a calculation/analysis of a
long alignment, only varying the contents of table 3
will give all the block independent forces. The design
parameters are shown in table 2, for a project this table
mostly remains same, the pipe diameter and the total
head may defer for headrace pipe and penstock pipe.

Using the co-ordinates given in table 3 we can
calculate the unit vectors in local co-ordinate system
for all the pipes, the important ones are: Headrace to
Tee(P1), Bend to Penstock(P2), Tee to SurgeTank(P3),
their unit vectors are given in table 4. After the unit
vectors are calculated, the hydro-static forces of those
pipes can be calculated using the formula given in
equation 12. The point of actions for these forces
shown in table 5 are respectively Tee, Bend and Tee
point. Similarly, all the other forces can be calculated
as per section 2.2, and we’ll get their vector form as
well as point of application.

Now, a shape of Anchor Block is assumed (and
iteratively modified till all safety parameters are
within satisfactory limit).

Table 2: Design Parameters

Description Symbol Value
Internal Diameter D 1200 mm
Thickness t 8 mm
Outer Diameter Do 1216 mm
Internal Area A 1130973 mm2

Steel Area As 30360 mm2

Steel Density ρs 7.85 kg/m3

Water Density ρw 1 kg/m3

Crest Level CL 1409.5 amsl
Static Head Z0 15.85 m
Dynamic Head Zdyn 20 m
Total Head Z 35.85 m
Weight of Water γw 11.09 kN/m
Weight of Pipe γp 2.34 kN/m
Total Weight γw+p 13.43 kN/m
Soil Density γsoil 18 kN/m3

Angle of Friction φ 22.5 ◦

Active Coeff. Ka 0.4465
At-rest Coeff. K0 0.6173
Passive Coeff. Kp 2.2398

Table 3: Co-ordinates of PI

Locations X Y Z
headrace 425818.13 3069492.75 1394.31
tee (T) 425792.82 3069487.00 1393.65
surgetank 425804.56 3069477.34 1400.81
bend (B) 425791.66 3069487.95 1393.50
penstock 425779.12 3069513.90 1390.63

Table 4: Unit Vectors for Pipes

Pipe r̂1 r̂p

P1 −0.97î−0.22 ĵ−0.03k̂ −0.98î−0.22 ĵ
P2 −0.43î+0.90 ĵ−0.10k̂ −0.44î+0.90 ĵ
P3 0.70î−0.57 ĵ+0.43k̂ 0.77î−0.64 ĵ

Pipe r̂2 r̂3

P1 0.02î+0.01 ĵ−1.00k̂ 0.22î−0.97 ĵ
P2 0.04î−0.09 ĵ−0.99k̂ −0.90î−0.43 ĵ
P3 0.30î−0.24 ĵ−0.82k̂ 0.57î+0.70 ĵ
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Table 5: Hydro-static Forces

Value Vector Form
P1 175.85 −171.43î−38.95 ĵ−4.47k̂
P2 397.75 172.21î−356.36 ĵ+39.41k̂
P3 397.75 −277.87î+228.64 ĵ−169.47k̂
Total 350.22 −277.09î−166.67 ĵ−134.52k̂

Table 6: Anchor Block Geometry

Start Pt. X Y Length
face A 425794.78 3069488.60 2.26
face B 425795.28 3069486.40 2.20
face C 425793.88 3069484.69 3.08
face D 425791.50 3069486.65 1.33
face E 425790.61 3069487.65 1.32
face F 425790.01 3069488.82 2.22
face G 425792.00 3069489.79 1.90
face H 425793.08 3069488.22 1.74

This co-ordinates shown in table 6 describe the shape
as seen in figure 12. Here the height of the block also
varies between the edges (not shown in figure). The
volume of Block was 49.38m3, CG at
(425792.942,3069487.2734,1394.0166) and total
weight of Block including water and pipe directly
inside it comes out to be −1116.6~k. All of these
measurements are taken from a CAD software.

With these co-ordinates of the points, we can calculate
the directions of all the faces, which will give the
rotational axis and direction of earth pressures. For
example, the vectors along the face-A and
perpendicular(outward) to the face-A are .

The earth pressure can be calculated after we have the
block geometry and the direction of the resultant of
block independent forces. The calculated earth
pressures are shown in table 7, the method to
determine whether to use active or at rest coefficient
was explained while defining the equation (16).

All the forces as shown in table 5 and 7 are plotted in
the figure 11 and 12 for ease of visualization.

As we can see, the Sum of all 3 hydrostatic forces is
used to determine the coefficient for earth pressure. If
the final resultant’s direction deviates from this
significantly next iteration can be done with new
coefficients of earth pressure.

Table 7: Forces due to Earth Pressures

Face K Force Vector Form
A Ka 145.31 −141.70î−32.20 ĵ
B Ka 141.45 −109.45î+89.61 ĵ
C K0 273.78 174.05î+211.34 ĵ
D K0 118.23 88.31î+78.60 ĵ
E K0 117.34 104.41î+53.54 ĵ
F Ka 142.74 62.54î−128.31 ĵ
G Ka 122.16 −100.65î−69.24 ĵ
H Ka 111.88 24.41î−109.18 ĵ

Total 138.76 101.92î+94.17 ĵ

Figure 11: Various Forces and Unit Vectors

Figure 12: All Forces Acting on the Anchor Block
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Table 8: Moments Calculations

Force Toe A Toe B Toe C
HP1 −265.03 −166.77 196.65
HP2 241.22 615.79 258.86
HP3 −703.40 −908.75 −187.77
EA −193.75 −118.98 153.25
EB −115.82 −188.60 0.54
EC 288.74 1.05 −365.05
ED 138.05 24.72 −155.75
EE 151.57 62.49 −143.61
EF 43.40 172.90 79.05
EG −151.32 −45.36 156.57
EH −0.53 117.40 91.69
WB −2 329.56 −2 637.77 −1 560.91

∑M+ve 862.98 994.35 936.61
∑M−ve −3 759.42 −4 066.23 −2 413.09

After all the forces has been calculated final resultant is
calculated by summation. The Factor of Safety against
sliding can be calculated as per equation 29 or 30.
Here the final resultant is,
R =−175.17î−72.51 ĵ−1251.12k̂
Hence, the equations give FoS = 3.30.

Now using the point of action of all the forces and their
vector form, moments about any axis can be calculated.
Dot product of that moment and the unit vector of the
rotational axis(generally along a toe of the block) gives
the overturning moment about that axis. The negative
values mean stabilizing moments. The overturning and
stabilizing moments about Toe A, B & C are given in
table 8.

After total moments for overturning about all the toes
are calculated, the Factor of Safety (FoS) of
overturning for all the rotational axis are calculated.
The FoS of overturning for all toes are given in table
9.

Here, minimum Factor of Safety against overturning is
found to be 2.58. The safe FoS depends upon different
guidelines, if it isn’t satisfactory the block geometry
can be changed and recalculations can be done as much
as necessary.

3.3 Discussions

The vector formula for most forces that act on an
Anchor Block has been derived by using their basic
definitions were verified using the known

Table 9: Factor of Safety

Toe Overturning Stabilizing FoS
A 862.98 3 759.42 4.36
B 994.35 4 066.23 4.09
C 936.61 2 413.09 2.58
D 882.11 2 461.29 2.79
E 759.81 2 845.00 3.74
F 458.26 3 812.98 8.32
G 662.46 1 769.70 2.67
H 707.98 1 902.45 2.69

trigonometric formulae for the same forces from
different books and guidelines in section 3.1.

From the section 3.2 we can see that all the forces
have clear meaning in their vector form and can be
easily understood in reference to the graph shown in
figure 12. The direction of each force is well
represented globally to check for other conditions like
not having resultant’s direction in the slope direction
of hill, dip direction of bed rock bedding/faults, flow
direction of subsurface waters, etc to look for the
critical conditions. The coefficients of earth pressure
can also be determined dynamically using resultant’s
direction, further decreasing the amount of human
logic needed.

An example of intermediate steps and results of
calculation was provided to demonstrate the usability
of the method and formulae. It can be clearly seen
that increasing the number of planes for analysis
doesn’t increase the effort of analysis significantly as
there is no need to resolve the forces for every
direction. The dot product and cross products take
care of directions and components automatically.

4. Conclusions and Recommendations

Here, it can be seen that the trigonometric method of
finding forces in 2D calculations yield the same result
as the ones from Vector method. While trigonometric
calculations increase in complexity when there are a
lot of planes to consider, the vector method can be
salable to any complex structure. Furthermore, it also
supports any additional forces which might be present.

Another advantage of this method comes in analysis,
with the presence of vector form of forces and their
point of application, the overturning moments along
any axis can be calculated instantly (a dot and a cross
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product each Vs calculation of a lot of components and
their perpendicular distances to rotating axis). Unlike
in traditional method where the designer would make
an intellectual guess about which axis the block would
be more likely to overturn and check for that axis,
here we can check the Factor of Safety against all the
axis without any significant additional efforts. And
since the input of the whole procedure is just project
parameters and alignment geometry, the calculations
can be applied to different alternatives and get result
with same calculation sheet(a spreadsheet) since this
method has all the sign conventions dependent on the
global co-ordinates without having to know the local
directions. Making it even more suitable for use in
automation.

There is still much space for improvements, for
example the calculation of CG can be made CAD
software independent (since we already have all the
geometry). An iterative formula for Anchor Block
geometry can be developed dependent on the
alignment, pipe diameters, cover and stability
parameters for design.
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Nomenclature

∗ Custom defined operator between vectors
which gives the vector component of the first
operand in the direction of the second operand
when second operand is a unit vector

α Anticlockwise angle made by flow direction
with horizontal plane(-ve for Downhill slope)

αL Coefficient of Linear Expansion

∆T Maximum difference in temperature between
summer and winter

γs Unit weight of Soil

γ ′s Submerged unit weight of Soil

γw Unit weight of Water

γp+w Combined Weight per length of Pipe and Water

î Unit Vector along X axis (Easting)

ĵ Unit Vector along Y axis (Northing)

k̂ Unit Vector along Z axis (Elevation)

n̂i Unit Vector perpendicular to the area of ith face
towards the soil

p̂ Unit vector perpendicular to the area of sliding
plane (towards the plane)

r̂1 Unit Vector along the flow direction of water
in the pipe

r̂2 Unit Vector which lies in the vertical place
passing through ~r1 and with the direction
perpendicular to ~r1

ŝ Unit vector along the sliding direction of
Anchor Block

µ Coefficient of friction between soil and Anchor
Block base

µs Coefficient of friction between saddle and pipe

ρw Density of Water

~Ei Force due to Earth Pressure in ith face

~FT Force due to change in temperature

~fmax Maximum resisting friction force

~f Actual friction force

~Hb Hydro-static Force on bend

~Hb Hydro-static Force on reducer

~Hdyn Hydrodynamic Force in the bend

~r3 Unit Vector perpendicular to both ~r1 and ~r2
which lies in horizontal plane(k = 0).

~rp Unit Vector which lies in the horizontal plane
and is in the direction of pipe.
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~SH Horizontal Seismic Force

~SV Vertical Seismic Force

~U Upthrust of Ground water on Anchor Block

~W1 Weight of Pipe along r̂1

~W2 Weight of Water and Pipe along r̂2

~WB Weight of Anchor Block

Abase Base Area of Anchor Block projected in
Horizontal Plane

D Internal Diameter of the pipe

E Young’s modulus of Elasticity

g Acceleration due to gravity

h Piezometric Head of Ground water on Anchor
Block Base

k Coefficient of Earth Pressure

k0 Coefficient of At-Rest Earth Pressure

ka Coefficient of Active Earth Pressure

kp Coefficient of Passive Earth Pressure

L Total distance between the Anchor block(PI)
and the Nearest saddle support(center)

l Total length of the pipe (Sloping distance
between PI)

li Length of ith face in contact with the soil

lp Horizontal Length of the pipe (Chainage
difference between PI)

Lpier Distance between adjacent piers

Pi Force due to water pressure on ith force.

Q Discharge of water in the pipe

t Thickness of the Pipe

v velocity of water in the pipe

KH Horizontal Seismic Coefficient

KV Vertical Seismic Coefficient
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